A Serre-swan Theorem for Gerbe Modules on Étale Lie Groupoids

نویسندگان

  • CHRISTOPH SCHWEIGERT
  • CHRISTOPHER TROPP
  • ALESSANDRO VALENTINO
چکیده

Given a torsion bundle gerbe on a compact smooth manifold or, more generally, on a compact étale Lie groupoid M , we show that the corresponding category of gerbe modules is equivalent to the category of finitely generated projective modules over an Azumaya algebra on M . This result can be seen as an equivariant Serre-Swan theorem for twisted vector bundles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groupoid Representations and Modules over the Convolution Algebras

The classical Serre-Swan’s theorem defines a bijective correspondence between vector bundles and finitely generated projective modules over the algebra of continuous functions on some compact Hausdorff topological space. We extend these results to obtain a correspondence between the category of representations of an étale Lie groupoid and the category of modules over its convolution algebra tha...

متن کامل

Connections, Local Subgroupoids, and a Holonomy Lie Groupoid of a Line Bundle Gerbe

Our main aim is to associate a holonomy Lie groupoid to the connective structure of an abelian gerbe. The construction has analogies with a procedure for the holonomy Lie groupoid of a foliation, in using a locally Lie groupoid and a globalisation procedure. We show that path connections and 2–holonomy on line bundles may be formulated using the notion of a connection pair on a double category,...

متن کامل

Local index theory over étale groupoids

We give a superconnection proof of Connes’ index theorem for proper cocompact actions of étale groupoids. This includes Connes’ general foliation index theorem for foliations with Hausdor¤ holonomy groupoid.

متن کامل

Renault’s Equivalence Theorem for C∗-Algebras of Étale Groupoids

The purpose of this paper is to prove directly that if two locally compact Hausdorff étale groupoids are Morita equivalent, then their reduced groupoid C∗-algebras are Morita equivalent.

متن کامل

Gerbes on Complex Reductive Lie Groups

Let K be a compact Lie group with complexification G. We construct by geometric methods a conjugation invariant gerbe on G; this then gives by restriction an invariant gerbe on K. Our construction works for any choice of level. When K is simple and simply-connected, the level is just an integer as usual. For general K, the level is a bilinear form b on a Cartan subalgebra where b satisfies a qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014